228 research outputs found

    Expectation Propagation on the Maximum of Correlated Normal Variables

    Full text link
    Many inference problems involving questions of optimality ask for the maximum or the minimum of a finite set of unknown quantities. This technical report derives the first two posterior moments of the maximum of two correlated Gaussian variables and the first two posterior moments of the two generating variables (corresponding to Gaussian approximations minimizing relative entropy). It is shown how this can be used to build a heuristic approximation to the maximum relationship over a finite set of Gaussian variables, allowing approximate inference by Expectation Propagation on such quantities.Comment: 11 pages, 7 figure

    Probabilistic Interpretation of Linear Solvers

    Full text link
    This manuscript proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems Bx=bBx = b with positive definite BB for xx. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of BB, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of quasi-Newton optimization algorithms are extended. Combined with properties of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.Comment: final version, in press at SIAM J Optimizatio

    Optimal Reinforcement Learning for Gaussian Systems

    Full text link
    The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finite-dimensional projection gives an impression for how this result may be helpful.Comment: final pre-conference version of this NIPS 2011 paper. Once again, please note some nontrivial changes to exposition and interpretation of the results, in particular in Equation (9) and Eqs. 11-14. The algorithm and results have remained the same, but their theoretical interpretation has change

    Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

    Full text link
    We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.Comment: 11 page (9 page conference paper, plus supplements

    Probabilistic Line Searches for Stochastic Optimization

    Full text link
    In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent.Comment: Extended version of the NIPS '15 conference paper, includes detailed pseudo-code, 59 pages, 35 figure

    DeepOBS: A Deep Learning Optimizer Benchmark Suite

    Full text link
    Because the choice and tuning of the optimizer affects the speed, and ultimately the performance of deep learning, there is significant past and recent research in this area. Yet, perhaps surprisingly, there is no generally agreed-upon protocol for the quantitative and reproducible evaluation of optimization strategies for deep learning. We suggest routines and benchmarks for stochastic optimization, with special focus on the unique aspects of deep learning, such as stochasticity, tunability and generalization. As the primary contribution, we present DeepOBS, a Python package of deep learning optimization benchmarks. The package addresses key challenges in the quantitative assessment of stochastic optimizers, and automates most steps of benchmarking. The library includes a wide and extensible set of ready-to-use realistic optimization problems, such as training Residual Networks for image classification on ImageNet or character-level language prediction models, as well as popular classics like MNIST and CIFAR-10. The package also provides realistic baseline results for the most popular optimizers on these test problems, ensuring a fair comparison to the competition when benchmarking new optimizers, and without having to run costly experiments. It comes with output back-ends that directly produce LaTeX code for inclusion in academic publications. It supports TensorFlow and is available open source.Comment: Accepted at ICLR 2019. 9 pages, 3 figures, 2 table
    corecore